Critical exponent for the viscosity of four binary liquids
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We have measured the viscosity of four binary mixtures near their consolute points: (1)
methanol + cyclohexane, (2) isobutyric acid + water, (3) nitroethane + 3-methylpentane,
and (4) 2-butoxyethanol 4+ water. The viscosity data are consistent with the power-law
divergence: 7~ |T — T, | ~”, with an apparent viscosity exponent in the range

0.0404 <y < 0.0444. Recent theoretical estimates for y are near 0.032, which is outside the
experimental range. The value of y is independent of whether the critical point is an upper or a
lower consolute point and of whether the approach toward T, is at constant pressure or at
constant volume. Our torsion oscillator viscometer is unique in its simultaneous low frequency
(~1Hz) and low shear rate (~0.1s™"), allowing its use close to the critical point before
encountering non-Newtonian fluid behavior associated with critical slowing down.
Nevertheless, we find quantitative evidence for viscoelasticity near the critical point.

I. INTRODUCTION

Despite dozens of studies in the last 25 years, the expo-
nent characterizing the weak divergence of the viscosity near
fluid critical points has not been accurately determined. This
paper will describe new measurements on four very different
binary liquids made with a unique viscometer which oper-
ates simultaneously at low frequency and low shear rate,
thus reducing systematic errors caused by slow fluctuations
near the critical point.

We chose the mixtures partly for the varied nature of
their noncritical backgrounds, as can be seen by the viscosity
data in Fig. 1. In Fig. 2 these same data are drawn on a
semilog scale. The resulting similarity of the curves, as well
as theory, suggests a multiplicative background. To analyze
the data, we assumed that the dependence of viscosity 7 on
reduced temperature ¢ could be described by the function

7= Ae"'t 7. n

The exponent y characterizes the critical divergence while
the parameter B measures the temperature dependence of
the noncritical background.

The magnitudes A for the binary liquids varied from
0.003 to 0.02 P. The background parameter B also varied
from — 8 to -+ 8. In addition, by approaching the critical
point along a constant volume instead of the usual constant
pressure path, for methanol + cyclohexane we were able to
change B by a factor of 2.5. In spite of these large variations
inbackground, the viscosity exponent values fall in the range

0.0404 <y <0.0444. 2

This range is narrower than the spread of 13 recent measure-
ments reviewed in Ref. 1, and it excludes the current theo-
retical prediction” of y = 0.032. When reasonable “correc-
tions to scaling™ are included in the analysis of the viscosity,
the differences in y between fluids can be accounted for, thus
recovering universality. However, such corrections cannot
reconcile Eq. (2) with the theoretical value of y.

Near the critical point, the diverging fluid relaxation
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time 7 constrains the viscometer’s frequency » and shear
rate S. Ideally,

wr€l and Sr<l (3)

if relaxation time effects are to be avoided. There are literally
dozens of techniques for measuring viscosity; however, most
violate at least one of the conditions of Eq. (3) or are other-
wise not suited for measurements near critical points. We
therefore constructed a new type of viscometer suited to
automated near-critical measurements. This viscometer has
the low frequency w/27 =~ 1 Hzand the low shear rate S~ 0.1
s~ '. We applied it to the critical binary mixtures methanol
+ cyclohexane (ME + CY), isobutyric acid + water
(IBA + H,0), nitroethane + 3-methylpentane
(NE + 3MP), and 2-butoxyethanol 4 water
(2BE + H,0). The methanol + cyclohexane data, taken
along both constant pressure and constant volume paths,
have been reanalyzed since an earlier report.>

Despite our efforts, the conditions in Eq. (3) were vio-
lated very close to the critical point; thus, we relied on quan-
titative theories to estimate the effects of shear* and frequen-
cy.® Our data provide evidence in support of the predicted
frequency effect.

In Sec. II we will give a brief outline of the theoretical
context of our measurements and review the standard argu-
ment for a multiplicative form of the noncritical back-
ground. Section II1, on apparatus and technique, will also be
brief as we have published a previous description of the vis-
cometer.® Section IV describes the samples and Sec. V de-
scribes how we analyzed the data, including effects due to
concentraton errors, shear, and frequency. Section VI is the
conclusion.

. THEORETICAL EXPECTATIONS

The viscosity 7 near the critical temperature 7. is char-
acterized by an exponent y according to

77~t—y’ (4)
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FIG. 1. Measured viscosity vs temperature for four binary mixtures near
their consolute points. ME + CY: methanol + cyclohexane, (ME-
+ CY),: methanol + cyclohexane at constant volume, IBA + H,0O: iso-
butyric acid + water, NE 4 3MP: nitroethane 4 3-methylpentane,
2BE -+ H,0: 2-butoxyethanol + water.

where the reduced temperature ¢ is defined by
t=|T—T,|/T,. (5)

Prior to this work, a review' of experimental values of y
listed 13 values spanning the range 0.032 < y < 0.042, rough-
ly 4 15%. This uncertainty contrasts with much more pre-
cise knowledge of static exponents. For example, the expo-
nent v, which describes the divergence of the fluctuation
correlation length via

=877 (6)
is known to within 1%.” (Here £, is a fluid-dependent ampli-
tude.)

Near critical points, dynamic properties such as thermal
conductivity, viscosity, or diffusion are less understood than
static properties such as heat capacity because both the theo-
retical and the experimental studies are more difficult. Uni-
versality classes, defined for static properties by the number
of spatial dimensions and the tensorial nature of the order
parameter, must be further subdivided for dynamical prop-
erties according to which conservation laws are pertinent to
the system dynamics. Thus a uniaxial ferromagnet and a
fluid which belong to the same static universality class might
belong to different dynamic universality classes because the
dynamics of diffusing spins and particles are quite different.®

- A key feature of near-critical dynamics is the slow relax-
ation of fluctuations, which can be characterized by a diverg-
ing relaxation time 7. For fluids in three dimensions,

ToeTgt =3V Pt ~ % (7

The time 7is that required for a fluctuation region of size £ to
return to equilibrium and is an intrinsic property of the fluid.
Typically, the fluid-dependent amplitude 7, is such that the
time 7 is greater than 1 s for achievable reduced tempera-
tures. In contrast, far from T,, 7 is of the order of nanose-
conds.
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FIG. 2. The data of Fig. 1 redrawn on a logarithmic viscosity scale. The
similarity of the curves demonstrates that the divergence of the viscosity is
at least roughly proportional to the noncritical viscosity as in Eq. (1).,

Although the viscosity diverges near T, the experimen-
tally accessible enhancement is small: only 109%-20% in
pure fluids such as xenon and 30%-50% in binary fluid mix-
tures.! The dynamic renormalization group theory’® predicts
that the enhancement asymptotically diverges as in Eq. (4)
or, in terms of the correlation length,

7]~§x-,,’ (8)
where
y=vx, 9

Another approach, mode coupling, employs the idea
that nonlinear couplings between relevant hydrodynamic
modes (species diffusion and transverse momentum diffu-
sion for a binary liquid) can affect the values of the kinetic
coefficients and thus the transport coefficients. Approxi-
mately, one has two coupled integral equations® which relate
osmotic conductivity and viscosity at wave vector k to each
other through the k-dependent osmotic susceptibility y (k).
Further approximations lead to the prediction of a logarith-
mically diverging viscosity

7 ="nol1+ (8/157)In(Q&) 1, (10)

where 7, is the noncritical fluid viscosity and Q is a fluid-
dependent wave vector.

The dynamic renormalization group result of Eq. (8),
strictly valid only in the experimentally inacessible region
where 7> 17,, is inconsistent with Eq. (10). Ohta® pointed
out that, if Eq. (10) is viewed as the first term of a power law
expansion, consistency can be restored by writing, ad hoc,

7 =10(QE)" (11)

or, in terms of the reduced temperature ¢,
n = [n,(Q&) "]t =™ (12)
= [10(QE&x) "2 =7 (13)

The quantity in brackets is the divergence amplitude and

J. Chem. Phys., Vol. 89, No. 6, 15 September 1988



3696

includes the fluid-dependent quantities 7,, ¢, and &;,. The
form of Eq. (13) is useful because it specifies how to treat the
noncritical background viscosity 7,: the critical divergence
is multiplied, not added, to the noncritical background. As
early as 1963, multiplicative backgrounds were found useful
in describing experimental viscosity data.’¢

The numerical value of the viscosity exponent is small:
an early prediction® for y, implicit in Eq. (10), was

We will compare our experimental results to the most recent
calculations” which estimate

(13)

and are claimed to supersede earlier, larger values. See Refs.
1 and 2 for a discussion of the relative merits of these calcula-
tions.

For all critical fluids, and especially binary liquids, the
temperature dependence of the noncritical viscosity 7,(T)
cannot be ignored in the analysis of experimental data. One
can either attempt an extrapolation of 1,( T from the non-
critical region into the critical region or fit the experimental
viscosity to a product of a simple analytic function and a
divergent term. We have found the latter approach success-
ful in describing our own viscosity data.

In general some sort of “crossover” function which
smoothly connects the viscosity behavior near 7, to the non-
critical temperature dependence far from 7,"'!'? should
also be considered and we will discuss its use in Sec. V.

Dynamic critical phenomena have been reviewed by
Swinney and Henry in 1973,"* by Hohenberg and Halperin
in 1977, and by Sengers in 1973'* and 1985."

y=vx,=0032

Hi. APPARATUS AND TECHNIQUES

Qur torsion-oscillator viscometer was explicitly de-
signed for low-frequency, low shear-rate operation near
critical points. It has three important accommodations for
nearly critical samples. These are precise temperature con-
trol ( «1 mK), which is necessary for acquiring data near
7., low frequency (~1 Hz), and small oscillation ampli-
tude, for low shear rates ( ~0.1s™'). For comparison, capil-
lary viscometers have shear rates from 10 to 1000 s . The
low frequency and shear rate of our viscometer also ensure
that viscous heating of the sample is negligible: of the order
of 1 nW. The inertial element of the oscillator (the bob) is
hollow and contains the entire sample within a surface of
revolution. The elastic element is a quartz fiber which has
very low internal friction. The viscosity is obtained from
measurements of the decay rate, or decrement, of the torsion
oscillations. The viscometer is automated so that several
hundred measurements can be made in an overnight run.

Examples of other types of torsion-oscillator visco-
meters are cited in Ref. 6. These viscometers have either slow
periods ( < 18) but large amplitudes ( ~ 1 rad) or small am-
plitudes ( ~107° rad) but fast periods ( > 100 Hz; see Sec.
V B 2: the resulting small penetration depth leads to shear
rates of ~0.1 s). Our instrument, operating at ~1 Hz and
~107? rad amplitude, is significantly superior for critical
point measurements. We have published a description® of
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this viscometer as equipped with a cylindrical bob; we will
therefore be brief in this section.

A. Torsion-osciliator geometries

Our first two binary mixtures were measured with the
cylindrical bob and the other two with a newer spherical bob.
We initially chose a cylindrical shape because an accurate
theory of the viscously damped motion exists'® and the ma-
chining is easier. The internal height and diameter of the
cylinder are both 3.8 cm and the thick (0.38 cm) stainless
steel shell allows sample pressures up to about 10 MPa.

The newer bob’s internal geometry, indicated in Fig. 3,
is 2 2.5 cm diameter sphere with an upper cylindrical exten-
sion 0.54 cm in diameter. The internal volume is about 8 cm®.
It was made by soldering two stainless steel hemispheres
together; brazing or welding involve greater risk of distor-
tion. The cylindrical extension accommodates thermal ex-
pansion of the sample while contributing only a smali part to
the total decrement. A PTFE disk seals the access hole at the
top of the extension.

B. Oscillator motion

The lower surface of the sample-containing bobis a vane
which served as a capacitor electrode. It hung close to a
second electrode fixed inside the thermostat. Before each

«— 4 cm —>

FIG. 3. The spherical torsion oscillator viscometer. Indicated are the (1)
quartz torsion fiber, (2) innermost thermostat shell, (3) moving capacitor
electrode, {4) stationary electrode, (5) fine wire connections to the oscilla-
tor, (6) fluid sample in the spherical bob, and (7) magnetic damper of non-
torsional oscillations.
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decrement measurement, the torsion oscillations were initi-
ated by a resonant sinusoidal voltage applied between the
bob and the fixed electrode. After the excitation ceased, the
freely decaying torsion oscillations were characterized by a
maximum amplitude 8, a frequency w, and a decrement D,

6(t) = G, sin(wt)e = “P7*", (16)

Typically, 6,~1 mrad and @/27 =1 Hz. To monitor this
movement, a commercial capacitance bridge and lock-in
amplifier continuously measured the capacitance between
the bob’s vane and the stationary electrode. The peak vol-
tages of the lock-in output waveform were fitted to the value
of the decrement, from which the viscosity was calculated.

C. Thermostat

The thermostat consisted of three nested aluminum
shells thermally connected to each other chiefly by radi-
ation. The sample-containing bob was hung inside the inner-
most shell and acted as a fourth stage of isolation. The bob’s
thermistor had an absolute accuracy of 0.1 K but was read to
a precision of about 0.05 mK by a digital ohmmeter. The
temperature difference across the innermost shell was moni-
tored with a thermocouple pile. The temperature of the in-
nermost shell was controlled to + 0.05 mK using a thermis-
tor read by an ac resistance bridge. The outermost shell,
which also acted as the vacuum can for the thermostat, was a
15 cm diameter aluminum cylinder controlled to 4 5 mK.

We avoided excessive temperature differences on the
bob during viscosity measurements by turning off the bob
heater. The equilibration time of the bob to the inner shell
was about 3 h. Exponential temperature sweeps were “‘pro-
grammed” by (1) inducing a temperature difference be-
tween the bob and surrounding shell and then (2) allowing
the bob temperature to relax to the regulated shell tempera-
ture over a period of many hours. During such a sweep,
decrement measurements were made and recorded together
with the bob’s temperatures. Although the sweep rate
through 7, ranged from 0.6 to 60 £K/s, no dependence of
the final results on sweep rate was noted.

IV. SAMPLE CHOICES AND PREPARATION

All four binary liquid mixtures have consolute points
with convenient critical temperatures (26 to 49 °C) and have
been studied by other groups. In this section we describe the
preparation and loading of the mixtures. The critical con-
centrations ®,, will also be given in terms of the weight frac-
tion of the first listed component.

A. Methanol and cyclohexane, ME +CY and (ME+CY),

We chose this mixture to complement light scattering
studies close to the critical point. Our methanol + cyclo-
hexane data, first reported in Ref. 3, have been re-analyzed.
Other viscosity measurements near the consolute point of
this mixture can be found in Ref. 16-19.

The densities of cyclohexane and methanol are matched
to within 2%. The hygroscopic methanol can cause prob-
lems because water contamination produces a large shift in
T.. We studied this mixture at approximately constant pres-
sure by filling the bob either 1/3 or 2/3 full under nitrogen.

3697

In addition, approximately constant volume measurements
[denoted by (ME + CY), ] were made by completely filling
the cylinder with the mixture. To our knowledge, these are
the only viscosity measurements at constant volume near a
consolute point. The constant volume constraint suppressed
thermal expansion and thus reduced the noncritical tem-
perature dependence of the viscosity [B of Eq. (1)] by a
factor of 2.5.

For the constant pressure runs, we loaded the cylindri-
cal bob at room temperature from syringes containing the
pure components as received from the manufacturers. For
the constant volume runs, we loaded the bob by vacuum
distillation as described in Ref. 3.

The compositions of the mixtures were determined by
weighing (0.290 methanol by weight). Reported critical
compositions for methanol + cyclohexane vary widely. We
reviewed the published values using two criteria: (1) the
critical temperature and (2) the technique used to deter-
mine ®,. Studies where T, differed from our own of
45.6 + 0.1 °C by more than 0.5 K were excluded*'>* be-
cause of this indication of contamination differences.”’*
Multiple sample determinations of ®, are susceptible to wa-
ter contamination and typically gave lower ®_’s than the
other studies. Thus we excluded these also.?*"2® The remain-
ing studies'®?’?® were bracketed by the values
&, =0.292 + 0.003 (methanol weight fraction).

B. Isobutyric acid and water, IBA+H.0

This mixture also has pure components well matched in
density but, unlike ME + CY, is not sensitive to water con-
tamination. Examples of earlier critical viscosity measure-
ments near the consolute point can be found in Refs. 30-32.

We loaded the cylindrical bob in air with distilled water
and with purified isobutyric acid provided by Greer at the
University of Maryland. Several compositions near &, were
used. The results reported here are for ¢ = 0.396 (weight
fraction of the provided isobutyric acid fluid, which includes
a small amount of water). To determine the critical concen-
tration, a study was made of the height of the liquid-liquid
meniscus in a series of samples near ®.. We found
&, = 0.394 + 0.002. ‘

C. Nitroethane and 3-methyipentane, NE+3MP

This mixture has been studied several times by capillary
viscometry. Values of y in the range 0.035 <y <0.039 have
been reported.'>*¢ Also, y has been roughly estimated from
a light scattering study.®” The fluctuation relaxation time is
the fastest of the four mixtures, reducing the importance of
shear and frequency effects near T,.

The mixture components>® were obtained from Sengers’
group at the University Maryland. They were loaded at
room temperature, under nitrogen, into the spherical bob at
® = 0.465 weight fraction nitroethane (0.500 mole frac-
tion). This concentration is close @, = 0.461 4 0.001
(0.495 mole fraction) which we obtained by replotting the
original density data of Wims and McIntyre*® as a function
of #° and converting the resulting p_ to the corresponding
critical mole and weight fractions using density*® and vol-
ume of mixing*' data. We note that &, = 0.500 is often
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quoted for this mixture; however, Burstyn and Sengers®’
mention a comparable discrepancy.

D. 2-Butoxyethanol and water, 2BE 4+ H,0

This last mixture is interesting because it has an easily
accessible lower consolute point. Several groups have stud-
ied the critical viscosity.*>** In comparison with
NE + 3MP, water contamination is not a problem, but the
fluctuation relaxation time amplitude ¢, is 50 times slower.
Thus, frequency and shear-dependent effects were seen far
from T,.

We loaded distilled water and commercially available 2-
butoxyethanol* into the spherical bob at 0.299 weight frac-
tion 2-butoxyethanol. Because literature values for ®, vary,
we used a meniscus location study to obtain the critical
weight fraction: ®, = 0.300 £+ 0.002.

V. DATA SELECTION AND FITTING

In this section we will first describe how we converted
decrements to viscosities. Then we will discuss the effects of
nonzero shear, frequency, and concentration error close to
the critical point and the consequent limits placed on the
viscosity data. The final portion deals with the methods used
to fit our data, with emphasis placed on the multiplicative
background.

All the data, in averaged or original form on diskette,
are available from the authors upon request.

A. Decrement to viscosity conversion: D-n

Roughly 1% of the several thousand decrement mea-
surements were rejected because the exponential fit to the
oscillator motion [see Eq. (16) ] had large errors caused by
mechanical disturbances of the viscometer. The remaining
decrement data were converted to viscosities as described
below.

1. Cylinder

The background decrement, that part of the decrement
not due to the sample viscosity, was first accounted for. It
resulted from the bending of wires attached to the bob, the
viscosity of residual gas in the thermostat, and, for the par-
tially filled cylinder, the vapor’s viscosity. The first two con-
tributions were measured with the bob entirely empty. The
third contribution was estimated from knowledge of the
sample’s vapor pressure and viscosity.

After subtracting the background decrement, several
other minor corrections were needed. For the cylinder, the
most important of these were due to the meniscus curvature
caused by wetting. These corrections are discussed in Ref. 6.

Finally, the theory derived by Newell and co-workers'*
was used to convert the measured decrements to viscosities.
This was conveniently done using a cubic “working equa-
tion”** accurate to 0.1%. This theory requires, as input pa-
rameters, the sample mass, sample density, bob moment of
inertia and internal dimensions, oscillator period, and back-
ground decrement.

As a check on the accuracy of the cylindrical visco-
meter, we measured the viscosity of water over the range of
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30 to 60 °C. Because water may not perfectly wet the bob’s
walls the meniscus correction had one free parameter: the
contact angle. By setting this angle to zero, data sets with the
bob 1/3 and 2/3 full agreed with each other within the scat-
ter of the data ( 4 0.4%) and also agreed with the accepted
temperature dependent viscosity of water*® within 1%.

2. Sphere

Decrement data from the spherical bob were reduced by
solving an equation of motion derived by Kearsley [ Eq. (10)
in Ref. 47]. Because this involves finding the zeros of a non-
analytic complex function, we used Newton’s method for the
case of a double-valued function of two variables. Unlike the
cylindrical bob, meniscus corrections were not needed (see
Fig. 3). A small correction for fluid contained in the cylin-
drical extension was estimated by assuming that the viscous
penetration depth was small compared to the radius of the
extension.

Measurements on water were made between 20 and
65 °C, a range over which its viscosity changes by a factor of
2. The results were uniformly in error by about 5% of which
roughly half could be traced to a slight asphericity of the bob.
We therefore calibrated the spherical viscometer with water
to an accuracy of + 0.5% by reducing subsequent decre-
ment data with a 0.9% larger effective sphere radius.

B. Limits on data close to T
1. Concentration

Measurements close to the critical point of a binary lig-
uid imply accurate control of concentration as well as tem-
perature. All of our samples were prepared at nominal criti-
cal concentrations based on a single reported value for each
mixture. We determined the actual critical concentrations
®, as described in Sec. I1.

In the following paragraph we will show how, if the
concentration difference from critical is known, the devi-
ation of viscosity from its value on the critical isopleth can be
estimated using a parametric equation of state valid near the
critical point. The restricted cubic model*® relates the re-
duced temperature ¢ and the order parameter ® to the pa-
rameters 7 and 6:

t=r(1 —b%0?), 17
AP=D — , = krfO(1 + c) (18)

where b ?~ 1.2766 and ¢ ~0.055 are universal constants. The
fluid-dependent constant X is proportional to the amplitude
B, of the coexistence curve:

2 B
k=0 =D"

By, 19
Qxo ° (19)

where
D — P, = + Bytf (20)

gives the shape of the coexistence curve. The correlation
length £ varies as

E=EyT"R(O)=£r"(1+0.16 62).
Thus, the deviation of § on a noncritical isopleth is

(21)
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A& _£(10) — £(1,AD) 2 [AQ]z
2 = (vb*—0.16)|—| . (22
£ £(,0) ( ) P (22)
Using Eq. (8), the corresponding deviation of the viscosity is
then

Ay A& 2 [A@]’
—t=x, —==x_(vb*—0.16)|—] .
7 & 7 k?

Equation (23) can be solved for the reduced temperature ¢

which corresponds to a given viscosity deviation Ag/7. Us-
ing Egs. (19) and (20) in Eq. (23), this temperature is

z_{[xﬂ(vb2—0.16)]”2(1+c)}"”[ AD }Vﬂ

(23)

b*-1 B, (Ag/m)'?
(24)
or
A P
t~0.024] ——M
[Bm(A’r//ﬂ)”z] (23)

Table I lists the reduced temperatures at which the esti-
mated concentration error for the four binary liquids leads to
arelative viscosity error of 0.5% (A7/7=0.005). The quan-
tities A® and B,, in Eq. (25) were converted to weight frac-
tion “‘units” where necessary.

2, Shear

Near T,, shear can reduce the observed viscosity
(“shear thinning” )**° and shift the critical temperature.>®!
Here, we show that our shear rates are sufficiently small to
avoid these concerns.

First, the relevant relaxation time 7 for each fluid mix-
ture must be estimated from the correlation length & and
diffusion coefficient D *!75%;

,_ &> 6ntm _ 6mEim
D* 1.03k,T 1.03k,T,

- (3v+y)57ﬂt —~(3v+y) .

(26)

Table II summarizes the fluctuation relaxation amplitudes
7, for these mixtures.

Next, the fluctuation time is compared with the maxi-
mum shear rate in the viscometer,

Rawb,
5

which we calculated from the oscillator radius R, frequency
o, and maximum amplitude §,. The viscous penetration
length & depends on the fluid viscosity 7 and density p:

S = 2n

TABLE L Reduced temperature where a 0.5% effect due to concentration
error is predicted by Eq. (25). Concentration error AP and coexistence
curve amplitude B,, are in terms of weight fraction.

TABLE II Relaxation time amplitude 7= (6m7,£33/(1.03 k5 T,).

Mixture 7o/P &/nm T./K 1,/10 g
ME+CY 00048  0.324 (Refs. 23 and 58) 318.8 6.8
IBA +H,0 00200 0.362 (Ref. 59) 299.8 42
NE+3MP 0.0033 0.216 (Ref. 52) 300.0 1.5
2BE+ H,0 0.0117  0.524 (Ref. 43) 320.5 69
2
5= [0, (28)
po

Oxtoby® measures shear effects through the dimensionless
parameter

A= S .
6
A small extrapolation of his Fig. 1 indicates a 0.5% effect in
the viscosity at £ ~0.13. The corresponding reduced tem-
perature is

fe [—S—To-]l/l‘93 '
6mA

Using Eq. (30), we list in Table III the reduced tempera-
tures where a 0.5% effect in the viscosity is expected. As
with the effect of concentration error, shear thinning is not
important for any of the four fluids above t = 4 10~. (The
frequency effect is mentioned in the following section.)

The other expected effect of shear is a small shift AT, of
the critical temperature®®*! which we ignore. The normal-
ized shift

AT,
T,

is proportional to a coefficient v which has been measured
for our most viscous mixture: isobutyric acid - water.>* The
measured value v=0.019 yields the negligible result
AT./T, =6X 1078 The T, shift for the other mixtures
should be comparably small.

(29)

(30)

— ~U(Tog)‘/"93 (31)

3. Frequency

In spite of always operating below 2 Hz, we observed
frequency effects near T,. We accounted for these effects by
using the theory of Bhattacharjee and Ferrell.* A recent re-
view>? is useful for understanding these papers.

Frequency effects can be interpreted as viscoelasticity,
or a complex viscosity:

Nor)=n(or) + in,(o7). (32)

TABLE IIL Reduced temperatures where 0.5% effects in the critical vis-
cosity due to shear {Eq. (30) ] and frequency [Eq. (33) ] are expected. Vis-
coelasticity enhances the viscosity at @7=5.

Mixture AD By t(conc.) Mixture Shear/s™? t(shear) (w/27)/Hz t(wT==5)
ME+4+CY  —0.002+0.003 0.75 (Ref. 28) 1x10°% ME+CY 0.09 1x10°¢ 0.60 5x10~5
IBA + H,0 +0.002 +0.002 0.54 (Refs. 56 and 57) 3x10~° IBA + H,0 0.05 2x107¢ 0.53-0.59 12x10~¢
NE 4+ 3MP +0.004 + 0.001 0.97 (Ref. 39) 4x10~¢ NE + 3MP 0.29 1x10~¢ 1.47 4x10~°
2BE + H,0 —0.001 +0.002 0.68 (Ref. 43) 2x1077 2BE + H,0 0.16 4x107¢ 1.47 25x107¢
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Both 7, and 7, are universal functions of the product &7 of
the oscillator frequency and the relaxation fluctuation time.
As Fig. 4 indicates, 17,/7, is small. To first order,* the visco-
meter measures an effective viscosity which is real:

N (@7) =1, + 7, =F(o7)n(0r=0) . (33)
The real function F(w7) is the ratio between 7, (w7) and the
zero-frequency viscosity 7(0). [Note that Bhattacharjee
and Ferrell use the convention exp( — iwt); using
exp( + iwt) makes 7, a negative function and then the effec-
tive viscosity given by 7, — 7,.]

Naturally, F(wr) approaches unity far from T,. Sur-
prisingly though, F(w7) is not monotonic. Figure 4 shows
that F(w7) > 1 near or~5. This enhancement of the effec-
tive viscosity has not been mentioned before. Table IT1 lists
the reduced temperatures where wr~5 for the binary mix-
tures. We explicitly included F(@7) in the fitting function.
This is justified by the insensitivity of F(w7) to errors in the
relaxation time amplitude 7, and by the small size ( ~0.5%)
of the resulting corrections in the experimental range of tem-
peratures.

C. Range of reduced temperatures

As explained above, effects due to concentration error
and nonzero shear cut off the viscosity divergence close to
T.. Therefore we fit no data at reduced temperatures below
t = 1073 (3 mK from T, ). This conservative cutoff is a fac-
tor of 2 to 10 larger than the shear and concentration bounds
listed in Tables I and III.

Far from T, the viscosity temperature dependence is
dominated by noncritical behavior. We did not fit the data at
reduced temperatures larger than t=10"17 (6 K from
T, ). Our motivation for this is as follows:

One approach to determining the “background” viscos-

mF(WT)
1.00

Re [n{wr)]
0.98 n(0)

0.96 -

0.02 | Im [n(wr)

n(0)

0.1 1 10 100
wT

-FIG. 4. The frequency effects of Eqs. (32) and (33). The real and imagi-
nary components of the viscosity as fractions of the zero-frequency viscosity
7(0). Their sum F(wr) is unity far from T, and increases by ~0.5% at
@7 =5 before monotonically falling toward zero. These functions were com-
puted numerically from Eqs. (2.4), (2.13), (3.16). (3.17) and (5.1 )-(5.4)
of Ref. 4.

ity is to extraplolate into the critical region a function fitted
to viscosity data “far” from T,. Unfortunately, even 20 K
away from T, the critical enhancement may be as much as a
10% effect. Also, the form of the background temperature
dependence is not well known. For example, the Arrhenius
function, adequate for some liquids, fails for associated li-
quids such as water. To avoid these problems we simply re-
stricted the range of reduced temperatures, characterized
the background by an exponential function,

7 (noncritical) ~ 4e® (34)

and fitted the parameters 4 and B. The differences between
Eq. (34) and another representation such as the Arrhenius
or Vogel-Fulcher form are negligible below ¢ = 10~ 17,

-D. Fitting equations

1. Averaged data

The viscosity data sets were handled in logarithmic
form, averaged in bins 0.1 decade wide in #. Figure 5 gives an
example of dn averaged data set.

The nonlinear fits minimized the sums of square devia-
tions of the averaged logarithmic data from the fitting func-
tion over the reduced temperature range

10" ¢5107%9, (35)

Each data point was given equal weight. Estimates of the
error in the viscosity exponent y (see Fig. 7) were made by
allowing the other fit parameters to freely vary, thus ac-
counting for possible correlations with the errors of other
parameters.

2. Multiplicative background with frequency correction

To describe our viscosity data, we multiplied Eq. (1) by
the function F(w7) of Eq. (33) to incorporate nonzero fre-
quency effects:

0.009
ME+CY

0.008 |- .
o .-"
2 .-
g o007
3 .-
% -
[+ "
Q -
2 --
5 .

0.006 — o

0.005

102 103 10* 105  10-6
[T-T,IIT,

FIG. 5. Averaged viscosity data for the methonal + cyclohexane mixture.
The slope of the curve at small reduced temperatures is the viscosity expo-
nent y.
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7 =Ae"t ~’F(wr) . (36)
Equation (36) absorbs both the background magnitude at
T, and the product (Q£,) " into the single parameter 4 [the
factor in brackets in Eq. (13)]. The function F(w7) has no
free parameter. Its argument was converted to reduced tem-
perature using the experimental frequencies and the relaxa-
tion time amplitudes listed in Tables II and III.

We allowed the critical temperature T, to be a fourth,
free parameter by modifying Eq. (36) as follows:

log(n) =log(4) — ylog(t + At) + B(t + At)

+log[F(t+ AD)], (37)
where At is essentially equivalent to a shift in 7, of
AT./T.=At. (38)

We expected the maximum decrement to occur at T, within
the precision allowed by the temperature interval between
successive decrement measurements (0.2 to 2 mK). For all
but one of our 17 runs, this was true: the 7, defined by the
maximum decrement and the T, found by fitting the viscos-
ity data agreed.

Equation (37), with the four free parameters of 4, B, y,
and At, describes our viscosity data very well as the devia-
tions plotted in Fig. 6 show. Table IV lists the parameters
associated with Fig. 6.

The number of free parameters can be reduced from 4 to

ME+CY
» L 1]
_:éd;‘ovﬁ.".p.o——'—
(ME+CY),
L ]
- = -
{
[ IBA+H,0
. H-' F.‘."h
. -n. ° " s
-
NE+3MP
. L) ® et .-
. . 8 ., ..
L
+1%[  2BE+H,0 .
s . . et
R R
a . - .-..- o
[a] . .
-——Fit range —=
-1% L 1 L

1072 10~4 10-6

Reduced Temperature t

FIG. 6. Deviations from Eq. (37) for five runs using the parameters listed in
Table IV.

TABLE 1V. Typical fit parameters for Eq. (37) for 10~'7 > 1> 107%,
A = noncritical amplitude, B = noncritical temperature dependence,
At=AT,/T, = shift in fitted T, from temperature of largest viscosity
point, y = viscosity exponent; critical viscosity 7~77".

Mixture A/P B At y

ME + CY 0.004 82 — 443 —1.56x10"° 0.0410
(ME + CY), 0.005 18 —1.67 +030x10°¢ 0.0404
IBA + H,0 0.02004 —790 +0.15x107° 0.0436
NE + 3MP 0.003 31 —250 +0.78x107° 0.0419
2BE + H,0 0.011 94 +779 —151x10"° 0.0419

3 by requiring Az = 0. The fitted range of reduced tempera-
tures must then be restricted to reflect the uncertainty in 7,
as determined by the largest decrement; as a result the values
for the three free parameters are essentially unchanged.

3. Crossover effects

Although Eq. (37) adequately describes our viscosity
data, the resulting values of y for the four fluid mixtures
disagree strongly with current theory and somewhat with
each other (see Table IV and Fig. 7). Because these data
were not taken in the asymptotic regime, we investigated
how crossover modifications of Eq. (37) could affect the
exponent y of the two fluids with extreme values of y:
ME + CY (nominally »p~0.041) and IBA + H,0
(y=0.044). We found that agreement between these fluids
could be obtained, but that agreement with the theoretical
value y=0.032 was not possible over the full range
10—1.7 St> 10—5.0‘

First we tried using crossover forms proposed by Bhat-
tacharjee et al.!’ for their limiting cases of ¢5,/gc = 0 and
dp/gc = w. Agreement between ME+CY and
IBA + H,O could be obtained only for the latter case and
only by increasing y. For ME + CY run, y was increased
from 0.041 to 0.044 but the cost was a significant increase in
¥* (goodness of fit) and implausible positive deviations in
the region 107°>#> 10~°. :

We also used a more general “correction-to-scaling” ap-
proach of multiplying Eq. (36) by the factor (1 + at*)*. If
Wegner corrections to £ are the most important corrections
to the viscosity, then A=0.5 and, according to Eq. (8),
x = x,,. Then the universality of the exponent y can be pre-
served, e.g., by choosing a= + 3 for ME + CY and a=0 for
IBA + H,0. Using A=v = 0.63, as suggested by Olchowy
and Sengers,>* gave similar results. Although universality
can be preserved, agreement with the theoretical value of y
could not be forced over the 3.3 decade range
1017 > ¢> 10~ with any A in the range for0 <A < 1.

We also investigated the behavior of the same correc-
tion-to-scaling function when restricted to only 2 decades in
t (173 >¢>10%%). For x =x,, the theoretical value
y = 0.032 was consistent with the data, within the experi-
mental resolution of + 0.2%, only for A <0.01. For x =1,
A <0.2 was necessary. We concluded that a single correc-
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tion-to-scaling term can reconcile the experimental and
theoretical viscosity exponents only over two decades of re-
duced temperature and then only with surprisingly small
values of the correction exponent A.

4. Background effects

Figure 7, intended to show the independence of y from
the background, nevertheless suggests a correlation between
y and the background parameter B. We considered several
possible changes to the background functional form, namely
the term Bt of Eq. (37). Using an Arrhenius form B /T or
adding a second-order term Ct ? had an negligible effect on y.
However, inclusion of an additive background 7, to Eq. (1)
is difficult to distinguish from a change in y, as was pointed
out by Calmettes.>® Modification of Eq. (1) to

n=Ae™t 7+, (39)
is approximately equivalent to
n=A'e¥t=Y, y=y(l—n5/4). (40)

Without increasing y* more than 5%, the ratio ,/4 ' could
be varied as much as 4+ 0.1, leading to corresponding shifts
in y of 4 0.003. This was enough to accomodate a universal
value of y through appropriate choices of %, for the various
fluids, but it was insufficient to reduce y to the theoretical
value.

5. Other possibilities
Fits using Eq. (37) over the more restricted ranges
10-¥75¢>10"* and 107 3>¢>10"% D)

did not significantly change the values of y. Fits attempted
using the simple mode-coupling form of Eq. (10) were un-
successful and gave large systematic deviations.

We considered the effect of an error D, in the estimate of

0045 T T T T T T T T T T T T T T T
_+ IBA+H20 |
I NE+3MP 23E+H20*(

| ME+CY \

0.040 } (ME+CY), .
y - -
0.035 4
i Theory 1

1 1 1 1 1 1 i i L i 1 i i L

-5 0 +5
B

FIG. 7. The viscosity exponent y for 17 runs as a function of the background
parameters B. [See Eq. (37).] All of the values lie considerably above
0.032, a recent theoretical result (Ref. 2). The error bars represent + lo
(68% confidence level). No significant sweep rate dependence was found.
For example, sweep rates of the three NE + 3MP runs were 2, 9, and 39
pK/satT,.
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the background decrement, the small part of the total decre-
ment D not due to the sample (see Sec. V A). In the thin
penetration depth limit, and for D, small compared to D, the
viscosity exponent y would be shifted to an apparent value of

Yy =y(1+Dy/D). (42)

For the fluids measured in the cylinder (ME + CY and
IBA + H,0), a 100% error in the background decrement
leads to D,/D < 0.01. The corresponding limit for the fluids
measured in the sphere (NE + 3MP and 2BE + 3MP) is
D,/D <0.05. Thus, plausible errors in the background de-
crement are insufficient to explain the observed differencees
in y between fluids.

As a check on other possible systematic errors, we com-
pared our viscosity measurements at £ = 10~ 2 to the results
of other groups. Although the results in Table V were not
corrected for differing critical temperatures or concenta-
tions, most show agreement to within 3%.

VI. CONCLUSIONS
A. Multiplicative hypothesis

The multiplicative hypothesis works extremely well for
the four binary mixtures. Despite widely different back-
ground viscosities, systematic deviations from Eq. (37) are
typically less than 0.2% over more than 3 decades in reduced
temperature.

B. Viscosity exponent
Fits to Eq. (37) yield exponent values in the range
0.0404 < y < 0.0444. (43)

This definitely disagrees with current predictions.? As
shown in Fig. 7, there are small differences among the four
fluids.

Two questions can be asked about the experimental ex-
ponents. First, are they consistent with universality? Second,
are they consistent with theoretical predictions? If Eq. (36)
is the true functional form then the respective answers are
“maybe” and “no”. However, because the viscosity mea-
surements were not made in the truly asymptotic regime
where 7> 77(background) it is possible that important cor-
rections to Eq. (36) are needed. Two candidates for such
corrections are crossover effects (Sec. VD 3) and an addi-
tive component of the background (Sec. V D 4). We found
neither correction was able to reconcile our data with the
theoretical ~value y=0.032 over the range
107'7 > ¢>107>° with reasonable coefficients. However,
either correction would be consistent with a universal value
of y in the range given by Eq. (43).

TABLE V. Comparisons at # = 10~ to other viscosity measurements.

Mixture n(other)/5(this work) — 1

ME + CY —0.5% (Ref. 17) + 0.7% (Ref. 16)

IBA + H,0 —2.5% (Ref. 30) —2.2% (Ref. 31) — 0.1% (Ref. 32)
NE +3MP  +4.1% (Ref. 33) +0.7% (Ref. 34) + 2.6% (Ref. 35)
2BE + H,0  +59% (Ref. 42) —1.1% (Ref. 35) +0.1% (Ref. 43)
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0.035
¢ = 0.396
1BA+H,0 $ = 0.403
2 ¢ = 0.389
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FIG. 8. Viscosity runs at three concentrations for isobutyric acid + water.
The concentration nearest ¢, shows the largest viscosity near T,.

oy
1% ME+CY

Predicted
Frequenc:

Y
Effect ~ .
\

0 as . =

Deviation

F—Rango of Fit—»{

~1%

10-2 103 104 10-3 10-¢
T-T T,

10
1% 1BA + H,0

;redlctod e
requency
Effect

Deviation
(-3
"
o

«—Range of Fit—

-1% o . L

1072 10-3 104 10-5 10-8
[T-TlIT,

FIG. 9. Deviations from Eq. (37) ignoring the frequency effects of Egs.
(32) and (33), i.e, F(wr) =F(0) = 1. The data show a 0.5% enhancement
near w7 = 5. The theory of Ref. 4 correctly predicts both the magnitude and
location of this enhancement without adjustable parameters.

Because Eq. (37) describes the data extremely well with
four parameters, additional free parameters can not extract
more information from the experiments. Refinements of the
theory of viscosity at moderate reduced temperatures which
do not introduce additional free parameters would be useful.
In its present form, the discrepancy between the theoretical
and experimental values of the viscosity exponent y cannot
be explained.

C. Deviations from power-law behavior near the critical
point

We encountered effects due to concentration errors and
nonzero frequency. Figure 8 illustrates how concentration
errors cause premature “rolloff ”” of the data close to T',. As
expected, the concentration closest to critical shows the lar-
gest viscosity enhancement.

As described in Sec. V B 3, we made use of an existing
theory for frequency effects near T,. Figure 9 shows the de-
viations which occur when the frequency effect is ignored.
The enhancement of the effective viscosity at w7=35 is a
unique signature and is definitely visible. Similar enhance-
ments were observed in the other two binary mixtures.
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